

Discussion on 70/80 GHz Report & Order (FCC-03-248)

December 11, 2003

Cisco Systems, Comsearch, Endwave, LOEA Communications, Terabeam

FCC-03-248, OET

© 2003, Cisco Systems, Inc. All rights reserved

Overview

Cisco.com

- The Report and Order got the big picture right, but important details seem to have been overlooked.
- Industry wants to emphasize the importance of the jointly developed technical rules – without which all the good work may be wasted.
- The Commission should shore up these areas:
 - The coordination/registration process
 - The interplay of channelization and loading requirements
 - Technical rules for (1) antenna gain, transmitter power, EIRP, and antenna RPE; (2) ATPC; and (3) power spectral density

FCC-03-248, OET © 2003, Cisco Systems, Inc. All rights r

Streamlined coordination must be made more effective.

FCC-03-248, OET

© 2003, Cisco Systems, Inc. All rights reserve

Path Coordination Should Be Required

isco.com

- Path coordination identifies potential interference while it can still be prevented, rather than months later
 - In a registration-only regime, there may be a long delay between link registration and detection of interference.
 - √ A link can be installed up to 12 months after registration.
 - ✓ If the link is installed during dry season, there may be an additional 6 months where harmful interference is not detected because it may only occur during a heavy rain event.
 - Delay makes it more difficult to identify and correct the problem
- Path coordination promotes intelligent link design rather than completely random deployment, boosting link density

ECC-03-248 OF I © 2003. Cisco Systems, Inc. All rights re-

Path Coordination Improves Link Density

- Monte Carlo simulation result showing probability of harmful interference for hub-and-spoke deployment in
 - Assumes FCC R&O rules
 - Transmitter power = 32dBm
- The figure illustrates significant improvement in the link density in the rain between uncoordinated and coordinated hub-and-spoke deployments.

The channel loading rules add needless complexity and uncertainty.

The channel loading rules add needless complexity and uncertainty.

Cisco.com

 A 1 bps/Hz loading requirement effectively prohibits binary modulation schemes

- A loading requirement is problematic when capacity needs do not fit "neatly" into 1.25 GHz segments
 - Is efficiency measured over the entire segment, or only over the occupied bandwidth?
 - Does interference protection extend to the entire segment, or only the occupied bandwidth?
- The Commission should license spatial pipes without regulating the number of bits passing through them.

FCC-03-248, OE

© 2003, Cisco Systems, Inc. All rights reserve

The Commission Should Embrace the Industry's Power/Gain Tradeoff

FCC-03-248, OET

© 2003, Cisco Systems, Inc. All rights reserved

The Commission Should Embrace the Industry's Power/Gain Tradeoff

Cisco.com

- The Commission is adopting a one-size-fits-all, 50dBi minimum antenna gain standard, which is typically met using a minimum 2-foot antenna dish.
- A 2-foot dish will be less marketable, more costly, and more sensitive to tower and building sway.
- The Joint Parties proposed to allow manufacturers to reduce the maximum authorized EIRP by a ratio of 2 dB of power per 1 dB of gain for lower gain antennas. This added flexibility would produce
 - Less interference; and
 - Lower barriers to entry for low-power products.
- The Commission should also adopt the Joint Parties proposal for antenna RPE requirements
 - The Joint Parties proposed RPE requirements between 1.2° to 5° off boresight as well as a cross-polarization requirement
 - The R&O defines a stricter antenna RPE which will necessitate more tapering to reduce antenna sidelobes.
 - The Commission cited manufacturing concerns, but the Joint Parties' proposal was vetted with antenna manufacturers and system suppliers for good balance between cost and performance.

FCC-03-248, OE

© 2003, Cisco Systems, Inc. All rights reserved

System Performance with Relaxed Antenna Requirements

Cisco.con

- This figure compares system performance with 0.6, 0.8, and 1.2 degree half power beamwidth for random deployments.
- System performance is comparable indicating that larger, higher gain antennas are not critical to high link density.
- Link ranges based on 99.99% availability, transmitter power identical for all cases

FCC-03-248, OET © 2003, Cisco Systems, Inc. All rights res

11

The Commission should require ATPC for links with EIRP > 23 dBW

EAT THE YAR THEFT COUNTY OF THIS CISCO SYSTEMS, INC. All Hobbs reserved

The Commission should require ATPC for links with EIRP > 23 dBW

Cisco.com

- ATPC is critical to permit dense hub-and-spoke deployments; it also increases link density in random deployments.
- Industry proposal for ATPC permits low-cost, lowpower transmitters because no ATPC is required below 23 dBW
- Under industry proposal, ATPC dynamic range increases as the radio's maximum EIRP increases.
 - ATPC range (dB) = max (0, EIRP_{dBW}-23)
 - E-band radios manufactured in the near future will have lower EIRPs and consequently low ATPC range—within the capability of near-term devices
 - Future high-performance radios will have increased EIRP and ATPC range as technology improves

FCC-03-248, OE

© 2003, Cisco Systems, Inc. All rights reserve

13

ATPC Hub-and-Spoke Simulation Results

- This figure illustrates the effect of ATPC range on the control of harmful interference
 - Interference is problem when a short-range link is on adjacent "spoke" to longrange link
 - Rain fading severely attenuates long-range link's signal
 - ATPC keeps short-range link transmitter's at lowest possible level, mitigating interference
- The percentage of failed links dramatically decreases as the ATPC dynamic range increases
 - JRC proposed max ATPC range of 32dB corresponding to 55-dBW EIRP transmitter

FCC-03-248, OET © 2003, Cisco Systems, Inc. All rights reserved

7

The Commission Should Adopt **Power Spectral Density Limits**

The Commission Should Adopt Power **Spectral Density Limits**

Cisco.com

- The 70/80GHz bands should be preserved for high bandwidth radios as a wireless alternative for fiber-rate services. Spectrum exists at lower frequencies for narrow band services.
- Currently there are no regulations restricting a device from transmitting an EIRP of 55dBW in an arbitrary small bandwidth (e.g., 1MHz).
- Such devices would have significantly different spectral and spatial properties.
 - Interference between narrow band and wide band devices would be difficult to predict with respect to measurement and calculation of
 - Narrow band devices will have much longer ranges, and would have wide exclusion zones, significantly reducing the deployment of wide band devices.
- As a compromise, the JRC proposal allows for narrowband devices but restricts the spectral density to a maximum of 150mW/100MHz.

The Commission should adopt the WCA text for interference protection criteria.

FCC-03-248, OE

© 2003, Cisco Systems, Inc. All rights reserved

The Commission should adopt the WCA text for interference protection criteria.

Cisco.com

- 36 dB should be the maximum C/I protection, not the minimum.
 - > Unduly high C/I objectives will limit deployable link density.
 - While analog modulation typically requires 55dB C/I or greater, the difference reflects the expectation of filtering on the analog receiver relative to wideband digital modulation.
- Rain fading will be highly correlated in these frequencies.
- Both carrier and the interference will fade during precipitation and C/I protection is necessary at all received carrier levels (clear air to fully faded)
 - There will be more than 1dB degradation to the static threshold during clear air operation
 - > C/I protection provides for un-impaired operation

FCC-0%-248 OF I © 2003, Cisco Systems, Inc. All rights reserve